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ABSTRACT

COMPACT COMPOSITION OPERATORS ON SOME

MÖBIUS INVARIANT BANACH SPACES

By

Maria Tjani

Let Bp (1 < p < ∞) be a Besov space and B the Bloch space. We give Carleson

type measure characterizations for compact composition operators Cφ : Bp → Bq

(1 < p ≤ q < ∞), Cφ : Bp → BMOA, and Cφ : B → V MOA. We show that if Cφ

is bounded on some Besov space then Cφ is compact on larger Besov spaces if and

only if it is compact on the Bloch space. Also, if φ is a boundedly valent holomorphic

self-map of the unit disc U such that φ(U) lies inside a polygon inscribed in the unit

circle, then Cφ is compact on BMOA, and on V MOA if and only if it is compact on

the Bloch space.
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Introduction

Let φ be a holomorphic self-map of the open unit disc U , H2 the Hilbert space of

functions holomorphic on U with square summable power series coefficients. Associate

to φ the composition operator Cφ defined by

Cφf = f ◦ φ ,

for f holomorphic on U . This is the first setting in which composition operators were

studied. By Littlewood’s Subordination Principle every composition operator takes

H2 into itself.

A natural question to ask is which composition operators on H2 are compact.

Shapiro in [31], using the Nevanlinna counting function, characterized the compact

composition operators on H2 as follows: Cφ is a compact operator on H2 if and only

if

lim
|w|→1

Nφ(w)

− log |w| = 0 .

A natural follow up question is about the boundedness and compactness of compo-

sition operators on other function spaces. We know the answer to this question in a

variety of spaces.

MacCluer in [20], Madigan in [21], Roan in [25], and Shapiro in [30] have charac-

terized the boundedness and compactness of Cφ in “small” spaces.

In “large” spaces, MacCluer and Shapiro show in [19] that Cφ is compact on

Bergman spaces if and only if φ does not have an angular derivative at any point of
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∂U . The angular derivative criterion is not sufficient, in general, in smaller spaces

unless we put extra conditions on the symbol. For example they showed that it is

sufficient on Hardy spaces, if the symbol is boundedly valent.

The Bloch space B is the space of holomorphic functions f on U such that ||f ||B =

supz∈U |f ′(z)|(1− |z|2) < ∞. It becomes a Banach space with norm |f(0)|+ ||f ||B. A

linear subspace X of B with a seminorm ||.||X is Möbius invariant if for all Möbius

transformations φ and all f ∈ X, f ◦ φ ∈ X and ||f ◦ φ||X = ||f ||X , and there exists

a positive constant c such that ||f ||B ≤ ||f ||X . It is easy to see that B is a Möbius

invariant space.

A Möbius invariant Banach space X is a Möbius invariant subspace of the Bloch

space with a seminorm ||.||X , whose norm is f → ||f ||X or f → |f(0)|+ ||f ||X . Rubel

and Timoney showed in [26] that B is the largest Möbius invariant Banach space that

possesses a decent linear functional. Other Möbius invariant Banach spaces include

the Besov spaces, the space of holomorphic functions with bounded mean oscillation

BMOA, and the space of holomorphic functions with vanishing mean oscillation

V MOA. We will define and discuss properties of these spaces in chapter 1.

Madigan and Matheson show in [22] that Cφ is compact on the Bloch space if and

only if

lim
|φ(z)|→1

|φ′(z)|(1− |z|2)
1− |φ(z)|2 = 0 .

They also show that if Cφ is compact on B then it can not have an angular derivative

at any point of ∂U .

In this thesis we study the compact composition operators on Bp (1 < p < ∞),

on BMOA, and on V MOA. For the rest of this introduction let X denote one of

these spaces, unless otherwise stated. One way to approach this problem is to relate

it to properties of φ. That is to see how fast or how often φ(U) touches ∂U . In

every function space that compact composition operators have been studied, the first
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class of examples were provided by symbols φ such that φ(U) is a relatively compact

subset of U . For the spaces that we study this is not an exception. Moreover, if Cφ

is compact on X then Cφ can not have an angular derivative at any point ∂U since,

if Cφ is compact on X then Cφ is compact on the Bloch space (see Proposition 3.2).

In Chapter 2, using counting functions, we give a Carleson measure character-

ization of compact operators Cφ : Bp → Bq (1 < p ≤ q < ∞) and Cφ : Bp →
BMOA (1 < p ≤ 2). MacCluer and Shapiro give in [19] Carleson measure char-

acterization of compact composition operators on the Dirichlet space D, which is a

Besov space (p = 2). Let αλ (λ ∈ U) be the basic conformal automorphism defined

by αλ(z) = λ−z
1−λz

. We prove the following theorems.

Theorem 2.7 Let 1 < p ≤ q < ∞. Then, the following are equivalent:

1. Cφ : Bp → Bq is a compact operator.

2. Nq(w, φ)dA(w) is a vanishing q-Carleson measure.

3. ||Cφαλ||Bq → 0, as |λ| → 1.

Theorem 2.8 The following are equivalent:

1. Cφ : D → BMOA is a compact operator.

2. ||Cφαλ||∗ → 0, as |λ| → 1.

The main steps in the proof of the two theorems above are the following. First we

characterize the vanishing p-Carleson measures (see Proposition 2.5). Then we give a

general characterization of compact composition operators on certain Banach spaces

of analytic functions in terms of bounded sequences that converge to 0 uniformly on

compact subsets of U (see Lemma 2.10 and Lemma 2.11). Lastly a technique given

by Arazy, Fisher, and Peetre in [2] and by Luecking in [17] and [18].
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In Chapter 3 we first give another characterization of compact composition ope-

rators on the Bloch space. We prove the following theorem.

Theorem 3.1 Let φ be a holomorphic self-map of U . Let X = Bp (1 < p < ∞),

BMOA, or B. Then Cφ : X → B is a compact operator if and only if

lim
|λ|→1

||Cφαλ||B = 0 .

Next we show that if Cφ : X → X is compact then so is Cφ : B → B. Moreover

we give conditions on the symbol under which the converse is valid as well. If X is a

Besov space then the converse holds if we suppose that Cφ is bounded on a smaller

Besov space. We prove the following theorem.

Theorem 3.7 Let 1 < r < q, 1 < p ≤ q, suppose that Cφ : Br → Br is a bounded

operator. Then the following are equivalent:

1. Cφ : B → B is a compact operator.

2. Cφ : Bp → Bq is a compact operator.

3. Cφ : D → BMOA is a compact operator.

4. Cφ : Bp → BMOA is a compact operator.

Next we describe the proof of the theorem above. At this point we have all the tools

we need (see Lemma 2.11, Theorem 2.7, Theorem 2.8, and Theorem 3.1) to prove

that 2, 3, 4→1. The hypothesis that Cφ : Br → Br is a bounded operator is not

needed for these implications. To prove the rest of the implications we first give a

partial case. We show that if φ is a univalent function and Cφ is a compact operator

on the Bloch space then Cφ : Bp → Bq (q > 2, 1 < p ≤ q) is compact as well (see

Theorem 3.5). Then we provide a general proof of this result for any Cφ such that
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Cφ : Br → Br (1 < r < q) is bounded (see Proposition 3.6). The proof of Theorem

3.7 will now follow easily.

We next note that a theorem of Arazy, Fisher and Peetre (see Theorem F) can

be used to characterize the boundedness of composition operators with domain the

Bloch space and range inside a variety of spaces. For example in any Besov space, in

BMOA, and in H2 (see Proposition 3.8). Moreover we note that the integral condition

of Shapiro and Taylor characterizing the Hilbert-Schmidt composition operators on

the Dirichlet space (see [29]) also characterizes the bounded operators Cφ : B → D.

We show that such operators are compact on BMOA. More general examples of

compact Cφ on BMOA are provided by integral conditions of this type. We prove

the following proposition.

Proposition 3.9 Let φ be a holomorphic self-map of U . Then,

1. If 1 < p < ∞ then

∫

U

|φ′(z)|p(1− |z|2)p−2

(1− |φ(z)|2)p
dA(z) < ∞

if and only if Cφ : B → Bp is a compact operator (hence Cφ : B→ BMOA is a

compact operator as well).

2. If

lim
|q|→1

∫

U

|φ′(z)|2(1− αq(z)|2)
(1− |φ(z)|2)2

dA(z) = 0

then Cφ : B → BMOA is a compact operator.

Next we give a characterization of compact operators Cφ : X → V MOA, where X

is a Möbius invariant subspace of the Bloch space. We prove the following theorem.

Theorem 3.11 Let φ be a holomorphic self-map of U , and X a Möbius invariant
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Banach space. Then Cφ : X → V MOA is a compact operator if and only if

lim
|q|→1

sup
||f ||X<1

f∈X

∫

U

|f ′(φ(z))|2|φ′(z)|2(1− |αq(z)|2)dA(z) = 0.

Next we give an integral condition characterization of compact Cφ : B → V MOA.

The proof is similar to the one given by Arazy, Fisher, and Peetre in [2, Theorem 3] for

characterizing Bloch Carleson measures. The main tools are Kintchine’s inequality

for gap series and Theorem 3.11. We prove the following theorem.

Theorem 3.13 Let φ be a holomorphic self-map of U . Then the following are equiva-

lent:

1. Cφ : B → V MOA is a compact operator.

2.

lim
|q|→1

∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z) = 0 .

Next we show that if φ is a boundedly valent holomorphic self-map of U such that

φ(U) lies inside a polygon inscribed in the unit circle then the compactness of Cφ on

Besov spaces, BMOA, and V MOA is equivalent to the compactness of Cφ on the

Bloch space. More precisely we prove the following theorem.

Theorem 3.15 Let φ be a boundedly valent holomorphic self-map of U such that φ(U)

lies inside a polygon inscribed in the unit circle. Then the following are equivalent:

1. Cφ : B → V MOA is a compact operator.

2. Cφ : B → BMOA is a compact operator.

3. Cφ : BMOA → BMOA is a compact operator.

4. Cφ : B → B is a compact operator.
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5. Cφ : B0 → B0 is a compact operator.

6. Cφ : V MOA → V MOA is a compact operator.

The main tools of the proof are the following. First there is Madigan and Math-

eson’s characterization of Bloch and little Bloch compactness. Next that boundedly

valent holomorphic functions on the little Bloch space must belong to V MOA. Fi-

nally, we use Proposition 3.12 and Theorem 3.13.

In chapter 4 we give some final remarks and questions.



CHAPTER 1

Besov spaces, BMOA, and VMOA

Let U be the open unit disc in the complex plane and ∂U the unit circle. The one-to-

one holomorphic functions that map U onto itself, called the Möbius transformations,

and denoted by G, have the form

λαp

where λ ∈ ∂U and αp is the basic conformal automorphism defined by

αp(z) =
p− z

1− pz

for p ∈ U . It is easy to check that the inverse of αp under composition is αp

αp ◦ αp(z) = z

for z ∈ U . Also,

|α′p(z)| = 1− |p|2
|1− pz|2

and

1− |αp(z)|2 =
(1− |p|2)(1− |z|2)

|1− pz|2 = (1− |z|2)|α′p(z)| (1.1)

for p, z ∈ U .

8
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The Bloch space B of U is the space of holomorphic functions f on U such that

||f ||B = sup
z∈U

(1− |z|2)|f ′(z)| < ∞.

It is easy to see that |f(0)|+||f ||B defines a norm that makes the Bloch space a Banach

space. Using (1.1) it is easy to see that B is invariant under Möbius transformations,

that is, if f ∈ B then f ◦ φ ∈ B, for all φ ∈ G. In fact,

||f ◦ φ||B = ||f ||B.

The polynomials are not dense in the Bloch space. The closure of the polynomials

in the Bloch norm is called the little Bloch space, denoted by B0. In [34, page 84] is

shown that

f ∈ B0 if and only if lim
|z|→1

(1− |z|2)|f ′(z)| = 0.

A linear space X of holomorphic functions on U with a seminorm ||.||X is Möbius

invariant if

1. X ⊂ B and there exists a positive constant c such that for all f ∈ X,

||f ||B ≤ c||f ||X .

2. For all φ ∈ G and all f ∈ X, f ◦ φ ∈ X and

||f ◦ φ||X = ||f ||X .

A Möbius invariant Banach space is a Möbius invariant linear space of holomorphic

functions on U with a seminorm ||.||X , whose norm is f → ||f ||X or f → |f(0)|+||f ||X .

For 1 < p < ∞, the Besov space Bp is defined to be the space of holomorphic
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functions f on U such that

||f ||pBp
=

∫

U

|f ′(z)|p(1− |z|2)p−2dA(z)

=

∫

U

|f ′(z)|p(1− |z|2)pdλ(z) < ∞

where dλ(z) is the Möbius invariant measure on U , namely

dλ(z) =
1

(1− |z|2)2
dA(z).

It is easy to see that |f(0)|+ ||f ||Bp is a norm on Bp that makes it a Banach space.

It is easy to see that log(1 − z) ∈ B. Moreover Holland and Walsh show in

[13, Theorem 1] that if 1 < p < ∞, and γ < 1
q

(q is such that 1
p

+ 1
q

= 1) then
(
log 2

1−z

)γ ∈ Bp. Other examples of functions in B,B0, and Bp (1 < p < ∞) are

provided by gap series. Let

f(z) =
∞∑

n=0

anzλn ,

where (λn) is a sequence of integers satisfying

λn+1

λn

≥ λ > 1, (1.2)

where λ is a constant and n ∈ N . Anderson, Clunie, and Pommerenke show in [1,

Lemma 2.1] that f ∈ B if and only if an = O(1), as n → ∞, and that f ∈ B0 if and

only if an → 0, as n →∞. Moreover, a description of Besov spaces that Peller gives

in [23, page 450] easily yields that f ∈ Bp if and only if
∑∞

k=0 λk|ak|p < ∞.

Let

f(z) =
∞∑

n=0

anz
n

be a holomorphic function on U . The Hardy space H2 is the collection of functions f
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holomorphic on U for which

||f ||2H2

def.
=

∞∑
n=0

|an|2 < ∞.

The Dirichlet space is the collection of functions f holomorphic on U for which

||f ||2D def.
=

∞∑
n=1

n|an|2 < ∞.

Both H2 and D become Hilbert spaces with norms ||f ||H2 and (|f(0)|2 + ||f ||2D)
1
2

respectively. It is easy to see, using polar coordinates, that f ∈ D if and only if

∫

U

|f ′(z)|2dA(z) < ∞.

Thus, the Besov-2 space is the Dirichlet space and B2 = D ⊂ H2.

Let const. denote a positive and finite constant which may change from one occurence

to the next but will not depend on the functions involved. Unlike the Hardy and

Bergman spaces the Besov space with a smaller index lies inside the Besov space with

a larger index.

Lemma 1.1 For 1 < p < q, Bp ⊂ Bq ⊂ B, and for any f ∈ Bp,

||f ||B ≤ const.||f ||Bq ≤ const.||f ||Bp .

Proof. First, let us show that each Besov space lies inside the Bloch space. Fix

p > 1, let f ∈ Bp; then,

∞ >

∫

U

|f ′(z)|p(1− |z|)2)p−2dA(z)
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≥
∫ 1

R

{∫ 2π

0

|f ′(reiθ)|p dθ

2π

}
(1− r2)p−2rdr

≥
∫ 1

R

{∫ 2π

0

|f ′(Reiθ)|p dθ

2π

}
(1− r2)p−2rdr

=

∫ 2π

0

|f ′(Reiθ)|p dθ

2π

∫ 1

R

(1− r2)p−2rdr

=
1

2

∫ 2π

0

|f ′(Reiθ)|p dθ

2π

∫ 1−R2

0

rp−2dr

≥ c

∫ 2π

0

|f ′(Reiθ)|p dθ

2π
(1−R)p−1 ,

where c is some positive constant, and 0 < R < 1. Above we used the fact that the

integral means of an analytic function f , Mp(R, f) =
{

1
2π

∫ 2π

0
|f(Reiθ|pdθ

}
(0 < p <

∞), are a non- decreasing function of R (Hardy’s Convexity Theorem [11, page 9]).

Thus,

Mp(R, f) ≤ const.
1

(1−R)
p−1

p

=
1

(1−R)1− 1
p

.

Then by the Hardy-Littlewood theorem ([11, Theorem 5.9, page 84]), the infinity

means of f ′,

M∞(R, f ′) = max
0≤θ<2π

|f ′(Reiθ)|,

can not grow faster than

1

(1−R)1− 1
p
+ 1

p

=
1

1−R

that is

sup
θ∈[0,2π]

|f ′(Reiθ)| ≤ c
1

1−R

for some positive constant c. Now, it is easy to see that this implies that f belongs
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to the Bloch space, and

||f ||pBp
≥ c||f ||B .

Therefore, Bp ⊂ B for any p > 1.

Next, for the containment among Besov spaces, fix p and q such that 1 < p < q

and let f ∈ Bp. Then,

||f ||qBq
=

∫

U

|f ′(z)|q(1− |z|2)qdλ(z)

=

∫

U

|f ′(z)|p(1− |z|2)p(|f ′(z)|(1− |z|2))p−qdλ(z)

≤ c||f ||q−p
B ||f ||pBp

< ∞.

Thus, Bp ⊂ Bq. This finishes the proof of the lemma. 2

Lemma 1.2 For 1 < p < ∞, Bp is a Möbius invariant Banach space.

Proof. Let f ∈ Bp, q ∈ U . Then,

||f ◦ αq||pBp
=

∫

U

|(f ◦ αq)
′(z)|p(1− |z|2)p−2dA(z)

=

∫

U

|f ′(αq(z))|p|α′q(z)|p(1− |z|2)p−2dA(z)

=

∫

U

|f ′(w)p|α′q(αq(w))|p(1− |αq(w)|2)p−2|α′q(w)|2dA(w)

=

∫

U

|f ′(w)|p 1

|α′q(w)|p (1− |w|2)p−2|α′q(w)|p−2|α′q(w)|2dA(w)

=

∫

U

|f ′(w)|p(1− |w|2)p−2dA(w) = ||f ||pBp
.
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Above we made the change of variables αq(z) = w and used basic properties of

the Möbius transformations. This shows that Bp is invariant under Möbius transfor-

mations. Thus, by Lemma 1.1, Bp is a Möbius invariant Banach space. 2

A holomorphic function f on U belongs to BMOA, the holomorphic members of

BMO, if

||f ||G = sup
q∈U

||f ◦ αq(z)− f(q)||H2 < ∞. (1.3)

Under the norm |f(0)| + ||f ||G BMOA becomes a complete normed linear space.

This is not the traditional definition of BMOA, it is actually a corollary of the John-

Nirenberg theorem [4, page 15]. By the Littlewood-Paley identities (see [34, page

167]) and the fact that log 1
|z| ∼ 1 − |z|2, for z away from the origin we see that a

seminorm equivalent to the one defined in (1.3) is:

||f ||2∗ = sup
q∈U

∫

U

|(f ◦ αq)
′(z)|2(1− |z|2)dA(z)

= sup
q∈U

∫

U

|f ′(αq(z))|2|α′q(z)|2(1− |z|2)dA(z) .

Thus after the change of variables αq(z) = w we obtain

||f ||2∗ = sup
q∈U

∫

U

|f ′(w)|2(1− |αq(w)|2)dA(w). (1.4)

Notation S(h, θ) = {z ∈ U : |z − eiθ| < h}, where θ ∈ [0, 2π), h ∈ (0, 1)}.
Let A and B be two quantities that depend on a holomorphic function f on U .

We say that A is equivalent to B, we write A ∼ B, if

const. A ≤ B ≤ const. A .

The notion of BMOA first arose in the context of mean oscillations of a function
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over cubes with edges parallel to the coordinate axes or equivalently over sets of the

form S(h, θ) ([28, pages 36-39]). That is,

||f ||2∗ ∼ sup
h∈(0,1)

θ∈[0,2π)

1

h

∫

S(h,θ)

|f ′(z)|2(1− |z|2)dA(z). (1.5)

The function log(1 − z) ∈ BMOA. In fact if f is any holomorphic, univalent,

and zero free function then log f ∈ BMOA. (this result first appeared in [3] and

[6]). Other examples of BMOA functions include the following. If (an) is a bounded

sequence then
∑∞

n=0
1
n
anz

n ∈ BMOA, and if
∑∞

n=0 |an|2 < ∞ then
∑∞

n=0 anzλn ∈
BMOA, where the sequence (λn) satisfies (1.2).

One of the many similarities between the Bloch space and BMOA is that poly-

nomials are not dense in either space. The closure of the polynomials in the BMOA

norm forms V MOA, the space of holomorphic functions with vanishing mean oscil-

lation. The space V MOA can be characterized as all those holomorphic functions f

on U such that

lim
|q|→1

∫

U

|f ′(w)|2(1− |αq(w)|2)dA(w) = 0 (1.6)

(the “little-oh” version of (1.4) ). Moreover the “little-oh” version of (1.5) is equivalent

to (1.6) ([28, pages 36-37, page 50]).

An easy way to see that BMOA is a subspace of the Bloch space is the following:

|f ′(0)| ≤ ||f ||H2

for any f holomorphic on U ; therefore,

|(f ◦ αp − f(p))′(0)| ≤ ||f ◦ αp − f(p)||H2

≤ ||f ||G
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hence

|f ′(αp(0)||α′p(0)| ≤ const.||f ||∗

that is

|f ′(p)|(1− |p|2) ≤ const.||f ||∗

thus,

||f ||B ≤ const.||f ||∗ .

Therefore, BMOA ⊂ B.

Let H∞ denote the space of bounded holomorphic functions on U .

Lemma 1.3 The space V MOA ∩H∞ is closed under pointwise multiplication.

Proof. Let f, g ∈ V MOA ∩H∞. Then,

∫

U

|(fg)′(z)|2(1− |αq(z)|2)dA(z)

=

∫

U

|f ′(z)|2|g(z)|2(1− |αq(z)|2)dA(z) +

∫

U

|g′(z)|2|f(z)|2(1− |αq(z)|2)dA(z)

≤ const.

{∫

U

|f ′(z)|2(1− |αq(z)|2)dA(z) +

∫

U

|g′(z)|2(1− |αq(z)|2)dA(z)

}
.

The righthand side of the above equation tends to zero as |q| → 1, since f, g ∈
V MOA. Hence, fg ∈ V MOA. 2

Lemma 1.4 For any p > 1, Bp is a subspace of VMOA.

Proof. Fix p > 2; first we will show that Bp ⊂ H2. Let f ∈ Bp. Then,

∫

U

|f ′(z)|2(1− |z|2)dA(z) =

∫

U

|f ′(z)|2(1− |z|2)2(1− |z|2)dλ(z)
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≤ ||f ||2Bp
(

∫

U

(1− |z|2) p
p−2 dλ(z))

p−2
p

by Hölder’s inequality. Since,

∫

U

(1− |z|2) p
p−2 dλ(z) =

∫

U

(1− |z|2) 4−p
p−2 dA(z) < ∞

for any p > 2, ∫

U

|f ′(z)|2(1− |z|2)dA(z) < ∞.

Therefore, Bp ⊂ H2, for any p > 2. Since D ⊂ H2, if 1 < p ≤ 2 then, Bp ⊆ D ⊂ H2.

Therefore Bp ⊂ H2, for any p > 1.

By the Möbius invariance of Besov spaces we obtain

||f ◦ αq − f(q)||2H2 ≤ c||f ◦ αq − f(q)||pBp
= c||f ||pBp

for some positive constant c and for any q ∈ U . Therefore,

||f ||2∗ ≤ c||f ||pBp
. (1.7)

This shows that Bp ⊂ BMOA.

Next we show that polynomials are dense in Bp. This together with (1.7) then

shows that Bp ⊂ V MOA. Let f ∈ Bp,

f(z) =
∞∑

n=0

anz
n

and σn(f) the n-th Fejer mean of f , that is:

σn(f)(z) =
n∑

λ=0

(1− |λ|
n + 1

)aλz
λ =

∫ 2π

0

f(zeiθ)Kn(θ)
dθ

2π
(1.8)
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where Kn(θ) is Fejer’s kernel,

Kn(θ) =
n∑

λ=−n

(1− |λ|
n + 1

)e−iλθ. (1.9)

We will show that σn(f) → f in Bp; Fubini’s theorem yields,

||σn(f)− f ||pBp
=

∫

U

|σn(f)′(z)− f ′(z)|p(1− |z|2)p−2dA(z)

≤
∫

U

∫ 2π

0

|eiθf ′(zeiθ)− f ′(z)|pKn(θ)
dθ

2π
(1− |z|2)p−2dA(z)

=

∫ 2π

0

||f(zeiθ)− f(z)||pBp
Kn(θ)

dθ

2π

=

∫ 2π

0

g(eiθ)Kn(θ)
dθ

2π

= σn(g)(1), (1.10)

where g(eiθ) = ||f(zeiθ)− f(z)||pBp
. It is easy to see that g is a continuous function on

∂U . Therefore, by Theorem 2.11 in [14, page 15]

lim
n→∞

max
0≤t≤2π

|σn(g)(eit)− g(eit)| = 0.

Hence, σn(g)(1) → g(1) = 0, as n →∞. Thus (1.10) yields,

lim
n→∞

||σn(f)− f ||pBp
= 0.

Therefore we obtain that Bp ⊂ V MOA. 2
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We have shown that for p < q

Bp ⊂ Bq ⊂ V MOA ⊂ BMOA ⊂ B.

Similarly to Lemma 1.2 we can show that BMOA and V MOA are also Möbius

invariant Banach spaces. In fact, the reason for insisting that a Möbius invariant

Banach space be a subspace of the Bloch space is that Rubel and Timoney proved in

[26] that if a linear space of analytic functions on U with a seminorm ||.||X is such

that for all f ∈ X, f ◦ φ ∈ X and ||f ◦ φ||X = ||f ||X , and it has a non-zero linear

functional L that is decent (that is L extends to a continuous linear functional on

the space of holomorphic functions on U) then, X has to be a subspace of the Bloch

space and the inclusion map is continuous.



CHAPTER 2

Carleson measures and compact composition operators on

Besov spaces and BMOA

If φ is a holomorphic self-map of U , then the composition operator Cφ

Cφf = f ◦ φ

maps holomorphic functions f to holomorphic functions.

Shapiro and Taylor show in [29], using the Riesz Factorization theorem and Vitali’s

convergence theorem that Cφ is compact on Hp, for some 0 < p < ∞ if and only if Cφ

is compact on H2. Moreover, Shapiro solves the compactness problem for composition

operators on Hp in [31] using the Nevanlinna counting function

Nφ(w) =
∑

φ(z)=w

− log |w|.

The following theorem is proved there;

Theorem A Let φ be a holomorphic function on U . Then Cφ is a compact operator

on H2 if and only if

lim
|w|→1

Nφ(w)

− log |w| = 0.

Madigan and Matheson characterize compact composition operators in the Bloch

space in [22]. The following theorem is proved there;

20
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Theorem B Let φ be a holomorphic function on U . Then, Cφ is a compact operator

on B if and only if

lim
|φ(z)|→1

|φ′(z)|(1− |z|2)
1− |φ(z)|2 = 0.

In this chapter we will use some Nevanlinna type functions to characterize the compact

composition operators on Besov spaces BMOA, and V MOA.

Definition 2.1 The counting function for the p-Besov space is

Np(w, φ) =
∑

φ(z)=w

{|φ′(z)|(1− |z|2)}p−2

for w ∈ U, p > 1.

Definition 2.2 The counting functions for BMOA are

N(w, q, φ) =
∑

φ(z)=w

(1− |αq(z)|2)

for w, q ∈ U.

The above counting functions come up in the change of variables formula in the

respective spaces as follows:

First, for f ∈ Bp and p > 1

||Cφf ||pBp
=

∫

U

|(f ◦ φ)′(z)|p(1− |z|2)p−2dA(z)

=

∫

U

|f ′(φ(z))|p|φ′(z)|p(1− |z|2)p−2dA(z). (2.1)

By making a non-univalent change of variables as done in [32, page 186] we see that

||Cφf ||pBp
=

∫

U

|f ′(w)|pNp(w, φ)dA(w). (2.2)
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Similarly, for BMOA

||Cφf ||2∗ = sup
q∈U

∫

U

|(f ◦ φ)′(z)|2(1− |αq(z)|2)dA(z)

= sup
q∈U

∫

U

|f ′(φ(z))|2|φ′(z)|2(1− |αq(z)|2)dA(z) .

Thus,

||Cφf ||2∗ = sup
q∈U

∫

U

|f ′(w)|2N(w, q, φ)dA(w). (2.3)

Arazy, Fisher, and Peetre prove in [2, Theorem 12] that composition operators

in BMOA are bounded for any holomorphic self-map of U , and they are bounded

on V MOA if and only if the symbol belongs to V MOA. Next, we provide a proof

similar to their proof.

Theorem C Let φ be a holomorphic self-map of U . Then,

1. Cφ is a bounded operator on BMOA.

2. Cφ(V MOA) ⊂ V MOA if and only if φ ∈ V MOA.

Proof of (1.) Suppose that φ is a holomorphic self-map of U and f ∈ BMOA.

If φ(0) = q ∈ U then φ = αq ◦ ψ for some holomorphic self-map ψ of U such that

ψ(0) = 0. Then Littlewood’s Subordination Principle (see [32, page 13]) yields

||f ◦ φ− f(q)||H2 = ||f ◦ αq ◦ ψ − f(q)||H2

≤ ||f ◦ αq − f(q)||H2 ≤ ||f ||∗ . (2.4)

Thus replacing φ in (2.4) with φ◦αq yields ||f ◦φ◦αq−f(q)||H2 ≤ ||f ||∗ for all q ∈ U .

Thus,

|f(φ(0))|+ ||f ◦ φ||∗ ≤ const.(|f(0)|+ ||f ||∗),
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for all f ∈ BMOA. This shows that Cφ is a bounded operator on BMOA.

Proof of (2.) First suppose that Cφ : V MOA → V MOA is a bounded ope-

rator. Then since the identity function f(z) = z belongs to V MOA, f ◦ φ =

φ ∈ V MOA. Conversely, suppose that φ ∈ V MOA. Then, by Lemma 1.3,

{φn ∈ V MOA : n ∈ N} ⊂ V MOA. Therefore {p(φ) : p polynomial} ⊂ V MOA.

Since polynomials are dense in VMOA part (1 ) above yields that f ◦ φ ∈ V MOA,

for any f ∈ V MOA. This completes the proof of the theorem. 2

Now consider the restriction of Cφ to Bp. Then Cφ is a bounded operator if and

only if there is a positive constant c such that

||Cφf ||pBp
≤ c||f ||pBp

for all f ∈ Bp or equivalently by (2.2)

∫

U

|f ′(w)|pNp(w, φ)dA(w) ≤ c||f ||PBp

for all f ∈ Bp. This leads, as in [2], to the definition of Carleson type measures. Since

we are interested in characterizing the compact composition operators we will also

talk about vanishing Carleson measures. We would like to use the following operator

theoretic wisdom;

If a “big-oh” condition characterizes the boundedness of an operator then the cor-

responding “little-oh” condition should characterize the compactness of the operator.

Definition 2.3 Let µ be a positive measure on U and let X = Bp (1 < p < ∞),

BMOA, or B. Then µ is an (X, p)-Carleson measure if there is a constant A > 0 so
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that ∫

U

|f ′(w)|pdµ(w) ≤ A||f ||pX ,

for all f ∈ X.

In view of (2.2) and (2.3) above we see that Cφ is a bounded operator on Bp if and only

if the measure Np(w, φ)dA(w) is a (Bp, p)-Carleson measure, and Cφ is a bounded ope-

rator on BMOA if and only if N(w, q, φ)dA(w) are uniformly (BMOA, 2)- Carleson

measures.

Arazy, Fisher, and Peetre gave the following characterization of (Bp, p) Carleson

measures in [2, Theorem 13] (the equivalence of (1) and (2) was given by Cima and

Wogen in [7]).

Theorem D For 1 < p < ∞, the following are equivalent:

1. µ is a (Bp, p)-Carleson measure.

2. There exists a constant A > 0 such that

µ(S(h, θ)) ≤ Ahp

for all θ ∈ [0, 2π), all h ∈ (0, 1).

3. There exists a constant B > 0 such that

∫

U

|α′q(z)|pdµ(z) ≤ B

for all q ∈ U .

Hence Theorem D yields,

Theorem E Let φ be a holomorphic function on U . Then Cφ is a bounded operator
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on Bp (1 < p < ∞) if and only if

sup
q∈U

||Cφαq||Bp < ∞ .

We prove a similar theorem for compact composition operators on Besov spaces.

Definition 2.4 For 1 < p < ∞, µ is called a vanishing p-Carleson measure if

lim
h→0

sup
θ∈[0,2π)

µ(S(h, θ))

hp
= 0 .

Note It is easy to see that if µ is a vanishing p−Carleson measure then it is a (Bp, p)-

Carleson measure.

The proposition below characterizes vanishing p-Carleson measures. The proof is

similar to the one for Carleson measures on H2 (p = 1), as given by Garnett in [12]

and by Chee in [5].

Proposition 2.5 For 1 < p < ∞, the following are equivalent:

1. µ is a vanishing p-Carleson measure.

2.
∫

U
|α′q(w)|pdµ(w) → 0, as |q| → 1.

Proof. First, suppose that (2) holds. Then, given an ε > 0 there is a δ > 0 such

that for 1− δ < |q| < 1 ∫

U

|α′q(w)|pdµ(w) < ε.

Fix ε > 0 and let δ > 0 be as above. Consider any 0 < h < δ, θ ∈ [0, 2π), let

q = (1− h)eiθ and w ∈ S(h, θ). Then,

|α′q(w)| =
1− |q|2
|1− qw|2

=
1− (1− h)2

|1− (1− h)e−iθw|2
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=
h(2− h)

|eiθ − (1− h)w|2

≥ h(2− h)

(|eiθ − w|+ |w − (1− h)w|)2

≥ h(2− h)

(h + h|w|)2

=
2− h

h(1 + |w|)2

≥ 1

4h
.

Hence, w ∈ S(h, θ) implies that |α′q(w)|p ≥ 1
4php . Then by our hypothesis,

ε >

∫

U

|α′q(w)|pdµ ≥
∫

S(h,θ)

|α′q(w)|pdµ ≥ 1

4php
µ(S(h, θ)).

This proves (1).

Conversely, suppose that (1) holds. Then, given an ε > 0 there is a δ > 0 such

that for any 0 < h < δ and any θ ∈ [0, 2π),

µ(S(h, θ)) < εhp . (2.5)

Fix ε > 0, let δ be as above. Fix h0 < δ such that (2.5) holds. Also, fix q = |q|eiθ ∈ U

with |q| > 1− h0

4
. We will show that for q large,

∫

U

|α′q(w)|pdµ(w) < ε .

Let E =
{
w ∈ U : |eiθ − |q|w| ≥ h0

4

}
. Then for each q ∈ U ,

∫

U

|α′q(w)|pdµ(w) =

∫

E

|α′q(w)|pdµ(w) +

∫

Ec

|α′q(w)|pdµ(w) . (2.6)
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We will estimate each of the integrals above. First if w ∈ E,

|α′q(w)|p =

(
1− |q|2

|eiθ − |q|w|2
)p

≤
(

42 1− |q|2
h2

o

)p

< ε (2.7)

for q large. Therefore (2.7) yields that for q large,

∫

E

|α′q(w)|pdµ(w) < εµ(E) ≤ µ(U)ε < const. ε . (2.8)

Let N = N(q) be the smallest positive integer such that

2N(1− |q|) < h0 ≤ 2N+1(1− |q|) . (2.9)

We will show that

Ec ⊂ S(2N(1− |q|), θ) ⊂ S(h0, θ) . (2.10)

Let w ∈ Ec. Then,

|w − eiθ| = |w − eiθ + |q|w − |q|w|

≤ |w − |q|w|+ |eiθ − |q|w|

< 1− |q|+ h0

4

< 1− |q|+ 2N−1(1− |q|)

≤ 2N(1− |q|) .

This proves that Ec ⊂ S(2N(1−|q|), θ). Next let w ∈ S(2N(1−|q|), θ). Then, by (2.9)

|w − eiθ| ≤ 2N(1− |q|) < h0 .

Hence S(2N(1− |q|, θ)) ⊂ S(h0, θ). Thus, (2.10) is proved.
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Let Ek = S(2k(1− |q|), θ), k = 0, 1, ...N. It is clear that

E0 ⊂ E1 ⊂ ... ⊂ EN ⊂ S(h0, θ).

Then,

∫

Ec

|α′q(w)|pdµ(w) ≤
∫

S(2N (1−|q|),θ)
|α′q(w)|pdµ(w)

=

∫

E0

+

∫

E1\E0

+... +

∫

EN\EN−1

|α′q(w)|pdµ(w) . (2.11)

We will estimate each of the integrals above.

First, if w ∈ E0 then |w − eiθ| < 1− |q| and

|α′q(w)| ≤ 1− |q|2
(1− |q|)2

≤ 2

1− |q| .

Since 1− |q| < h0 < δ, (2.5) yields

∫

E0

|α′q(w)|pdµ(w) ≤ 2p

(1− |q|)p
µ(E0)

≤ const. ε .

Next if w ∈ Ek \ Ek−1 for some k = 2, 3, ..., N,

|α′q(w)| = 1− |q|2
|eiθ − |q|w|2 ≤ 1− |q|2

(|w − eiθ| − |w|(1− |q|))2

≤ const.

1− |q|
1

4k
. (2.12)
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Hence, (2.5), (2.9), and (2.12) yield

∫

Ek\Ek−1

|α′q(w)|pdµ(w) ≤ const.

(1− |q|)p

1

4kp
µ(Ek)

≤ const.

(1− |q|)p

1

4kp
ε 2kp(1− |q|)p

= const.
1

2kp
ε . (2.13)

Therefore (2.8), (2.11), (2.12), and (2.13) imply that

∫

U

|α′q(w)|pdµ(w) < const. ε +

(
N∑

k=0

1

2kp

)
const. ε

< const. ε

for q large. This proves (2) . 2

Note In the proof above it was essential that

∞∑

k=0

1

2kp
< ∞,

since N depends on q.

The following is a corollary of the proof of Proposition 2.5. We will use it in the

proof of Theorem 2.8.

Corollary 2.6 Let {µλ : λ ∈ I} be a collection of positive measures. Then for

1 < p < ∞ the following are equivalent:
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1.

lim
h→0

sup
θ∈[0,2π)

λ∈I

µλ(S(h, θ))

hp
= 0 .

2.

lim
|q|→1

sup
λ∈I

∫

U

|α′q(w)|pdµλ(w) = 0 .

The following two theorems give a characterization of compact composition ope-

rators between Besov spaces, and from D to BMOA.

Theorem 2.7 Let 1 < p ≤ q < ∞. Then, the following are equivalent:

1. Cφ : Bp → Bq is a compact operator.

2. Nq(w, φ)dA(w) is a vanishing q-Carleson measure.

3. ||Cφαλ||Bq → 0, as |λ| → 1.

Theorem 2.8 The following are equivalent:

1. Cφ : D → BMOA is a compact operator.

2. ||Cφαλ||∗ → 0, as |λ| → 1.

In the proof of the two theorems above we will need the following lemmas.

Lemma 2.9 Let X = Bp (1 < p < ∞), BMOA, or B. Then,

1. Every bounded sequence (fn) in X is uniformly bounded on compact sets.

2. For any sequence (fn) on X such that ||fn||X → 0, fn − fn(0) → 0 uniformly

on compact sets.

Proof. In [34, page 82] is shown that a Bloch function can grow at most as fast as

log 1
1−|z| , that is

|fn(z)− fn(0)| ≤ const.||fn||B log
1

1− |z|
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≤ const.||fn||X log
1

1− |z| .

Hence the result follows. 2

Lemma 2.10 Let X, Y be two Banach spaces of analytic functions on U . Suppose

that

1. The point evaluation functionals on X are continuous.

2. The closed unit ball of X is a compact subset of X in the topology of uniform

convergence on compact sets.

3. T : X → Y is continuous when X and Y are given the topology of uniform

convergence on compact sets.

Then, T is a compact operator if and only if given a bounded sequence (fn) in X such

that fn → 0 uniformly on compact sets, then the sequence (Tfn) converges to zero in

the norm of Y .

Proof. First, suppose that T is a compact operator and let (fn) be a bounded

sequence in X such that fn → 0 uniformly on compact sets, as n →∞. For the rest

of this proof let |.|Y denote the norm of Y . If the conclusion is false then there exists

an ε > 0 and a subsequence n1 < n2 < n3 < ... such that

|Tfnj
|Y ≥ ε, for all j = 1, 2, 3, ... (2.14)

Since (fn) is a bounded sequence and T a compact operator we can find a further

subsequence nj1 < nj2 < ... and f ∈ Y such that

|Tfnjk
− f |Y → 0 , (2.15)
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as k → ∞. By (1) point evaluation functionals are continuous, therefore for any

z ∈ U

|(Tfnjk
− f)(z)| ≤ const.|Tfnjk

− f |Y . (2.16)

Hence (2.15) and (2.16) yield,

Tfnjk
− f → 0 (2.17)

uniformly on compact sets. Moreover, since fnjk
→ 0 uniformly on compact sets , (3)

yields, Tfnjk
→ 0 uniformly on compact sets. Thus by (2.17) f = 0. Hence (2.15)

yields |Tfnjk
|Y → 0 as k → ∞, which contradicts (2.14). Therefore we must have

|Tfn|Y → 0, as n →∞.

Conversely, let (fn) be a bounded sequence in X. We will show that the sequence

(Tfn) has a norm convergent subsequence. Without loss of generality (fn) belongs

to the unit ball of X. By (2) there is a subsequence n1 < n2 < ... such that fnj
→ f

uniformly on compact sets, for some f ∈ X. Hence, by our hypothesis, |Tfnj
−Tf |Y →

0, as j →∞. This finishes the proof of the lemma. 2

Note (⇒) Only uses (1) and (3). (⇐) Only uses (2).

Lemma 2.11 Let X, Y = Bp (1 < p < ∞), BMOA, or B. Then Cφ : X → Y is

a compact operator if and only if for any bounded sequence (fn) in X with fn → 0

uniformly on compact sets as n →∞, ||Cφfn||Y → 0, as n →∞.

Proof. We will show that (1), (2), (3) of Lemma 2.10 hold for our spaces. By

Lemma 2.9 it is easy to see that (1) and (3) hold. To show that (2) holds, let (fn)

be a sequence in the closed unit ball of X . Then by Lemma 2.9, (fn) is uniformly

bounded on compact sets. Therefore, by Montel’s Theorem ([8, page 153]), there is

a subsequence n1 < n2 < ... such that fnk
→ g uniformly on compact sets, for some

g ∈ H(U). Thus we only need to show that g ∈ X.
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(a) If X = Bp (1 < p < ∞),

∫

U

|g′(z)|p(1− |z|2)p−2dA(z) =

∫

U

lim
k→∞

|f ′nk
(z)|p(1− |z|2)p−2dA(z)

≤ lim inf
k→∞

∫

U

|f ′nk
(z)|p(1− |z|2)p−2

= lim inf
k→∞

||fnk
||pBp

< ∞

by Fatou’s Theorem and our hypothesis.

(b) If X = BMOA,

∫

U

|g′(z)|2(1− |αq(z)|2dA(z) =

∫

U

lim
k→∞

|f ′nk
(z)|2(1− |αq(z)|2dA(z)

≤ lim inf
k→∞

∫

U

|f ′nk
(z)|2(1− |αq(z)|2dA(z)

≤ lim inf
k→∞

||fnk
||2∗ < ∞

by Fatou’s Theorem and our hypothesis.

(c) If X = B,

|g′(z)|(1− |z|2) = lim
k→∞

|f ′nk
(z)|(1− |z|2) ≤ lim

k→∞
||fnk

||B < ∞

by our hypothesis. Therefore Lemma 2.10 yields that Cφ : X → Y is a compact

operator if and only if for any bounded sequence (fn) in X with fn → 0 uniformly

on compact sets as n →∞, |fn(φ(0))| + ||Cφfn||Y → 0, as n →∞. Which is clearly

equivalent to the statement of this lemma. This completes the proof of the lemma.

2
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An immediate corollary of Lemma 2.11 is the following.

Corollary 2.12 If φ is a holomorphic self-map of U such that ||φ||∞ < 1 then Cφ is

compact on every Besov space, and on BMOA.

Proof. First, let us show that Cφ is compact on the Besov space Bp. Let (fn) be

a bounded sequence in Bp such that fn → 0 uniformly on compact subsets of U .

Suppose that ε > 0 is given. Since φ(U) is a compact subset of U , there exists a

positive integer N such that if n ≥ N then |f ′n(φ(z))|p < ε, for all z ∈ U . Then by

(2.1),

||Cφfn||pBp
< ε||φ||pBp

< const. ε .

Thus, ||Cφfn||Bp → 0, as n → ∞, and Lemma 2.11 yields that Cφ is a compact

operator on Bp. The proof of the BMOA compactness of Cφ is similar to the proof

above. 2

Now we are ready to prove Theorem 2.7 and 2.8. The technique is similar to the

one given by Arazy, Fisher, and Peetre in [2, Theorem 13] and Luecking in [17], and

[18].

Proof of Theorem 2.7. By (2.2),

||Cφαλ||qBq
=

∫

U

|α′λ(w)|qN q
φ(w)dA(w) .

Thus Proposition 2.5 yields (2 ) ⇔ (3 ).

Next we show that (1 ) ⇒ (3 ). We assume that Cφ : Bp → Bq is a compact

operator. Note that {αλ : λ ∈ U} is a bounded set in Bp since,

||αλ||Bp = ||z ◦ αλ||Bp = ||z||Bp ,
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and the norm of αλ in Bp is

|αλ(0)|+ ||αλ||Bp < 1 + ||z||Bp < ∞.

Also αλ − λ → 0, as |λ| → 1, uniformly on compact sets since,

|αλ(z)− λ| = |z| 1− |λ|
2

|1− λz| .

Hence, by Lemma 2.11, ||Cφ(αλ − λ)||Bq → 0, as |λ| → 1. Therefore ||Cφαλ||Bq → 0,

as |λ| → 1.

Finally, let us show that (2 ) ⇒ (1 ). Let (fn) be a bounded sequence in Bp, that

converges to 0, uniformly on compact sets. Then the mean value property for the

holomorphic function f ′n yields,

f ′n(w) =
4

π(1− |w|)2

∫

|w−z|< 1−|w|
2

f ′n(z)dA(z). (2.18)

Therefore by Jensen’s inequality ([27, Theorem 3.3, page 62] and (2.18)),

|f ′n(w)|q ≤ 4

π(1− |w|)2

∫

|w−z|< 1−|w|
2

|f ′n(z)|qdA(z). (2.19)

Then by (2.19) and Fubini’s Theorem ([27, Theorem 8.8, page 164]),

||Cφfn||qBq
=

∫

U

|f ′n(w)|qNq(w, φ)dA(w)

≤
∫

U

4

π(1− |w|)2

(∫

|w−z|< 1−|w|
2

|f ′n(z)|qdA(z)

)
Nq(w, φ)dA(w)

=
4

π

∫

U

|f ′n(z)|q
(∫

U

1

(1− |w|)2
χ{z:|w−z|< 1−|w|

2
}(z)Nq(w, φ)dA(w)

)
dA(z).(2.20)
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Note that if |w − z| < 1−|w|
2

then w ∈ S(2(1− |z|), θ), where z = |z|eiθ, since

|w − eiθ| ≤ |z − w|+ |eiθ − z| < 1− |w|
2

+ | z

|z| − z| < 2(1− |z|).

Moreover, if |w − z| < 1−|w|
2

then 1
(1−|w|)2 ≤ const. 1

(1−|z|)2 . Therefore (2.20) yields,

||Cφfn||qBq
≤ const.

∫

U

|f ′n(z)|q
(1− |z|)2

(∫

S(2(1−|z|),θ)
Nq(w, φ)dA(w)

)
dA(z)

= const.

(∫

|z|>1− δ
2

+

∫

|z|≤1− δ
2

|f ′n(z)|q
(1− |z|)2

(∫

S(2(1−|z|,θ)
Nq(w, φ)dA(w)

)
dA(z)

)

= const.(I + II) , (2.21)

for any 0 < δ < 1.

Fix ε > 0 and let δ > 0 be such that for any θ ∈ [0, 2π] and any h < δ

∫

S(h,θ)

Nq(w, φ)dA(w) < εhq. (2.22)

By (2.21) and (2.22)

I ≤ 2qε

∫

|z|>1− δ
2

|f ′n(z)|q
(1− |z|2)2

(1− |z|2)qdA(z)

≤ const.ε||fn||qBq
< const. ε. (2.23)

By (2.21),

II ≤ const.

∫

|z|≤1− δ
2

|f ′n(z)|q
(∫

U

Nq(w, φ)dA(w)

)
dA(z)
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=

∫

|z|≤1− δ
2

|f ′n(z)|q||φ||qBq
dA(z) < const. ε (2.24)

for n large enough, since f ′n → 0 uniformly on compact sets. Combining (2.21),

(2.23) and (2.24) we obtain that ||Cφfn||Bq < const. ε for n large enough. Therefore

||Cφfn||Bq → 0, as n → ∞ and Lemma 2.11 yields, Cφ : Bp → Bq is a compact

operator. This finishes the proof of Theorem 2.7. 2

Proof of Theorem 2.8. (1) ⇒ (2). Since αλ is a bounded set in D and αλ−λ → 0

uniformly on compact sets, as |λ| → 1, Lemma 2.11 yields ||Cφαλ||∗ → 0, as |λ| → 1.

(2) ⇒ (1). The proof is similar to the proof of Theorem 2.7. We will use Lemma

2.11. Let (fn) be a bounded sequence in D such that fn → 0 uniformly on compact

sets. Our hypothesis is that ||Cφαλ||∗ → 0, as |λ| → 1. That is

sup
q∈U

∫

U

|α′λ(w)|2N(w, q, φ)dA(w) → 0

as |λ| → 1. Hence, Corollary 2.6 yields

lim
h→0

sup
q∈U

θ∈[0,2π)

1

h2

∫

S(h,θ)

N(w, q, φ)dA(w) = 0.

Fix an ε > 0 and let δ > 0 be such that for any θ ∈ [0, 2π) and any q ∈ U , if h < δ

then ∫

S(h,θ)

N(w, q, φ)dA(w) < εh2. (2.25)

Fix q ∈ U . Then by (2.19),

∫

U

|f ′n(w)|2N(w, q, φ)dA(w)

≤
∫

U

4

π(1− |w|)2

(∫

|w−z|< 1−|w|
2

|f ′n(z)|2dA(z)

)
N(w, q, φ)dA(w)
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≤ const.

∫

U

|f ′n(z)|2
(1− |z|)2

(∫

S(2(1−|z|),θ)
N(w, q, φ)dA(w)

)
dA(z) . (2.26)

The proof of (2.26) is the same as the proof of (2.21) in Theorem 2.7. Next split the

integral in (2.26) into two pieces, one over the set {z ∈ U : |z| > 1− δ
2
} and the other

over the complementary set . Then ,

∫

|z|>1− δ
2

|f ′n(z)|2
(1− |z|)2

(∫

S(2(1−|z|),θ)
N(w, q, φ)dA(w)

)
dA(z)

< ε

∫

|z|>1− δ
2

|f ′n(z)|2
(1− |z|)2

4(1− |z|2)2dA(z)

< const. ε||fn||2D < const. ε , (2.27)

and

∫

|z|≤1− δ
2

|f ′n(z)|2
(1− |z|)2

(∫

S(2(1−|z|),θ)
N(w, q, φ)dA(w)

)
dA(z)

≤ const.

(
sup
q∈U

∫

U

N(w, q, φ)dA(w)

) ∫

|z|≤1− δ
2

|f ′n(z)|2dA(z)

≤ const. ε, (2.28)

for n large enough since φ ∈ BMOA and f ′n → 0 uniformly on
{
z ∈ U : |z| ≤ 1− δ

2

}
.

Therefore (2.26), (2.27), and (2.28) yield that

sup
q∈U

∫

U

|f ′n(w)|2N(w, q, φ)dA(w) < const. ε

for n large enough. Thus ||Cφfn||∗ → 0, as n →∞. Hence by Lemma 2.11, (1) holds.
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This finishes the proof of the theorem. 2

Note It is easy to see that Theorem 2.8 yields that Cφ : Bp → BMOA is a compact

operator if and only if ||Cφαλ||∗ → 0 as |λ| → 1, for 1 < p ≤ 2. Moreover in chapter

three we will show that if Cφ is bounded on some Besov space then this is valid for

any p > 1.

The following is a corollary of the proof of the Theorem 2.8.

Corollary 2.13 If supq∈U

∫
U
|α′λ(w)|3N(w, q, φ)dA(w) → 0, as |λ| → 1, then Cφ :

BMOA → BMOA is a compact operator.

Note Similarly to the proof of the above theorems we can easily see that, the above

sufficient condition for BMOA compactness is equivalent to Cφ : H2 → BMOA

being a compact operator.



CHAPTER 3

Besov space, BMOA, and VMOA compactness of Cφ versus

Bloch compactness of Cφ

In this chapter we give conditions that relate the compact composition operators on

Besov spaces, BMOA, and V MOA with those on the Bloch space, and the little

Bloch space. Recall the characterization of compact composition operators on the

Bloch space that Madigan and Matheson give in [22, Theorem 2].

Theorem B Let φ be a holomorphic self-map of U . Then, Cφ is a compact operator

on B if and only if

lim
|φ(z)|→1

|φ′(z)|(1− |z|2)
1− |φ(z)|2 = 0.

Next we give another characterization of compact composition operators on the Bloch

space.

Theorem 3.1 Let φ be a holomorphic self-map of U . Let X = Bp (1 < p < ∞),

BMOA, or B. Then Cφ : X → B is a compact operator if and only if

lim
|λ|→1

||Cφαλ||B = 0.

Proof. First, suppose that Cφ : X → B is a compact operator. Then {αλ : λ ∈ U}
is a bounded set in X, and αλ − λ → 0 uniformly on compact sets as |λ| → 1. Thus

40
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by Lemma 2.11

lim
|λ|→1

||Cφαλ||B = 0.

Conversely, suppose that lim ||Cφαλ||B = 0, as |λ| → 1. Let (fn) be a bounded

sequence in X such that fn → 0 uniformly on compact sets, as n →∞. We will show

that

lim
n→∞

||Cφfn||B = 0.

Let ε > 0 be given and fix 0 < δ < 1 such that if |λ| > δ then ||Cφαλ||B < ε. Hence

for any z0 ∈ U such that |φ(z0)| > δ, ||Cφαφ(z0)||B < ε. In particular,

|α′φ(z0)(φ(z0))| |φ′(z0)|(1− |z0|2) < ε

that is,

|φ′(z0)|
1− |φ(z0)|2 (1− |z0|2) < ε . (3.1)

Then (3.1) yields that for any n ∈ N and z0 ∈ U such that |φ(z0)| > δ,

|(fn ◦ φ)′(z0)|(1− |z0|2) = |f ′n(φ(z0))| |φ′(z0)|(1− |z0|2)

< |f ′n(φ(z0))|(1− |φ(z0)|2) ε

≤ ||fn||B ε

≤ ||fn||X ε < const.ε . (3.2)

Since the set A = {w : |w| ≤ δ} is a compact subset of U and f ′n → 0 uniformly on

compact sets,

sup
w∈A

|f ′n(w)| → 0, as n →∞ .

Therefore we may choose N large such that |f ′n(φ(z))| < ε, for any n ≥ N and any
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z ∈ U such that |φ(z)| ≤ δ. Then, for all such z,

|(fn ◦ φ)′(z)|(1− |z|2) = |f ′n(φ(z))| |φ′(z)|(1− |z|2)

< ε|φ′(z)|(1− |z|2)

< ||φ||B ε , (3.3)

where n ≥ N . Thus, (3.2) and (3.3) yield

||fn ◦ φ||B < const. ε, for n ≥ N. (3.4)

Thus (3.4) yields that ||Cφfn||B → 0 as n →∞. Hence by Lemma 2.11 Cφ : X → B
is a compact operator. 2

Notes (a) It is easy to see that the proof of Theorem 3.1 yields that

lim
|λ|→1

||Cφαλ||B = 0

if and only if

lim
|φ(z)|→1

|φ′(z)|(1− |z|2)
1− |φ(z)|2 = 0 .

Therefore we obtain another proof of Theorem B.

(b) The above theorem is valid for any Banach subspace X of the Bloch space such

that the point evaluation functionals on X are continuous and the closed unit ball of

X is compact in the topology of uniform convergence on compact sets.

An immediate consequence of Theorem 3.1 along with Lemma 2.11 and Theorems

2.7 and 2.8 is the following proposition.

Proposition 3.2 Let 1 < p ≤ q ≤ ∞. Then:

1. If Cφ : Bp → Bq is a compact operator then so is Cφ : B → B.
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2. For 1 < p ≤ 2,

if Cφ : Bp → BMOA is a compact operator then so is Cφ : B → B.

3. If Cφ : BMOA → BMOA is a compact operator then so is Cφ : B → B.

The following proposition gives a sufficient condition for a composition operator

to be compact on a Besov space.

Proposition 3.3 Let 1 < p ≤ q < ∞. If

lim
|w|→1

Nq(w, φ)

(1− |w|2)q−2
= 0

then Cφ : Bp → Bq is a compact operator.

Proof. Let (fn) be a bounded sequence in Bp such that fn → 0 uniformly on

compact sets as n →∞. Let ε > 0 be given and fix δ > 0 such that if 1− δ < |w| < 1

then

Nq(w, φ) < ε(1− |w|2)q−2. (3.5)

By (2.2)

||Cφfn||qBq
=

∫

U

|f ′n(w)|qNq(w, φ)dA(w)

=

∫

1−δ<|w|<1

+

∫

|w|≤1−δ

|f ′n(w)|qNq(w, φ)dA(w)

= I + II (3.6)

By (3.5),

I < ε

∫

1−δ<|w|<1

|f ′n(w)|q(1− |w|2)q−2dA(w)
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< ε||fn||qBq
< ε const. (fn is bounded in Bp) (3.7)

Since |f ′n|q → 0 uniformly on {w ∈ U : |w| ≤ 1− δ}, we can find a positive integer N

such that

II ≤ ε

∫

|w|<1−δ

Nq(w, φ)dA(w) < ε const. , (3.8)

for n ≥ N , since ∫

|w|<1−δ

Nq(w, φ)dA(w) ≤ ||φ||Bq < ∞.

By (3.6), (3.7), and (3.8) ||Cφfn||Bq < ε const. for n ≥ N . Therefore, ||Cφfn||Bq → 0

as n →∞. Hence Lemma 2.11 yields Cφ : Bp → Bq is a compact operator. 2

Composition operators on Besov spaces are not bounded for all holomorphic self-

maps of U . But if the Besov space contains the Dirichlet space and the symbol is

boundedly valent then the induced composition operator is bounded.

Lemma 3.4 Let φ be a boundedly valent holomorphic self-map of U , 2 ≤ q < ∞,

and 1 < p ≤ q. Then Cφ : Bp → Bq is a bounded operator.

Proof. Let f ∈ Bp (1 < p < ∞). Applying the Schwarz Lemma ([27, page 254]) to

the function αz ◦ φ ◦ αφ(z) yields

|φ′(z)|(1− |z|2) ≤ 1− |φ(z)|2,

for any z ∈ U . Hence by (2.2),

||Cφf ||qBq
=

∫

U

|f ′(w)|q
∑

φ(z)=w

(|φ′(z)|(1− |z|2)q−2
dA(w)

≤ const.

∫

U

|f ′(w)|q
∑

φ(z)=w

(
1− |φ(z)|2)q−2

dA(w) .
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Therefore,

||Cφf ||qBq
≤ const.

∫

U

|f ′(w)|q(1− |w|2)q−2dA(w) ≤ const.||f ||pBp

for any holomorphic function f on U . Thus, Cφ : Bp → Bq is a bounded operator. 2

The following theorem and proposition give conditions under which compactness

in the Bloch space is equivalent to compactness from a Besov space to some larger

Besov space.

Theorem 3.5 Let φ be a univalent holomorphic self-map of U . Then, for q > 2,

Cφ : Bq → Bq is a compact operator if and only if Cφ : B → B is a compact operator.

Proof. First, suppose that Cφ is a compact operator on the Bloch space. The

sufficient condition of Besov space compactness in Proposition 3.3 for a univalent

function is

lim
|w|→1

{ |φ′(φ−1(w))|(1− |φ−1(w)|2
1− |w|2

}q−2

= 0

or equivalently,

lim
|φ(z)|→1

|φ′(z)|(1− |z|2)
1− |φ(z)|2 = 0.

Which is a compactness condition for the composition operator on the Bloch space

(Theorem B). Hence, by our assumption, Cφ : Bq → Bq is a compact operator.

The converse follows from Proposition 3.2. This finishes the proof of the theorem.

2

Note Theorem 3.5 is not valid when q = 2. There exists a univalent holomorphic

self-map of U such that Cφ is compact on the Bloch space but not on the Dirichlet

space. To describe such an example we will need some preliminaries. First, the Koebe

Distortion Theorem (see [32, page 156]) which asserts that if φ is a univalent function
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on U then for any z ∈ U

δφ(U)(φ(z)) ∼ |φ′(z)|(1− |z|2),

where δφ(U)(φ(z)) is the Euclidean distance from φ(z) to ∂φ(U). Thus the Madigan

and Matheson condition of Bloch compactness for a univalent φ is equivalent to

lim
|φ(z)|→1

δφ(U)(φ(z))

1− |φ(z)|2 = 0 . (3.9)

Let D(0, α) denote the disc centered at 0 of radius α. A nontangential approach

region Ωα (0 < α < 1) in U , with vertex ζ ∈ ∂U is the convex hull of D(0, α) ∪ {ζ}
minus the point ζ.

If ψ is a univalent holomorphic self-map of U such that ψ(U) = Ωα (0 < α < 1)

then infz∈U
δψ(U)(ψ(z))

1−|ψ(z)|2 > 0. Thus by (3.9) Cψ is not compact on B. But if we delete

certain circular arcs from Ωα then for the Riemann map φ from U onto the induced

domain G, Cφ is compact on B. Let Ln = {z ∈ Ωα : |z − 1| ≤ 1
2n} (n ≥ 1). Then

L1 ⊃ L2 ⊃ L3 ⊃ ... . Remove from Ln \ Ln+1 (n ≥ 1) arcs centered at 1, with one

end point at ∂Ωα, in such a way so that the succesive radii are less than 1
3n apart,

and the distance of each arc to ∂Ωα is less than 1
3n . Then the distance from each

z ∈ Ln \ Ln+1 to the boundary of the induced subdomain, Gn, of Ln \ Ln+1 is less

than 1
3n . Let G = ∪n≥1Gn. Then, as |z| → 1, δG(z) = o(1 − |z|). Therefore by (3.9)

Cφ is compact on B. Moreover Cφ is not compact on the Dirichlet space. This follows

from Theorem 2.7.

The theorem above is a special case of the following proposition. We show that if Cφ

is bounded on some Besov space then the compactness of Cφ on larger Besov spaces

is equivalent to the compactness of Cφ on the Bloch space. This result is similar to

the compactness of Cφ on weighted Dirichlet spaces Dα (α > −1). These are spaces
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of holomorphic functions f on U such that |f(0)|2 +
∫

U
|f ′(z)|2(1− |z|2)αdA(z) < ∞.

MacCluer and Shapiro show in [19, Main Theorem, page 893] that if Cφ is bounded

on some weighted Dirichlet space Dα then the compactness of Cφ on larger weighted

Dirichlet spaces is equivalent to φ having no angular derivative at each point of ∂U .

Proposition 3.6 Let 1 < r < q, 1 < p ≤ q. Suppose that Cφ : Br → Br is a bounded

operator. Then, Cφ : Bp → Bq is a compact operator if and only if Cφ : B → B is a

compact operator.

Proof . First, suppose that Cφ is a compact operator on the Bloch space. For any

λ ∈ U ,

||Cφαλ||qBq
=

∫

U

|α′λ(φ(z))|q|φ′(z)|q(1− |z|2)q−2dA(z) (3.10)

=

∫

U

|α′λ(φ(z))|r|φ′(z)|r(1− |z|2)r−2
(|α′λ(φ(z))| |φ′(z)|(1− |z|2))q−r

dA(z)

≤ ||Cφαλ||q−r
B ||Cφαλ||rBr

≤ const.||Cφαλ||q−r
B (by Theorem E and since Cφ : Br → Br is bounded) .

Therefore (3.10) and Theorem 3.1 yield that ||Cφαλ||Bq → 0 as |λ| → 1. Thus by

Theorem 2.7, Cφ : Bp → Bq is a compact operator. The converse follows from

Proposition 3.2. This finishes the proof of the proposition. 2

The following theorem summarizes the above. If a composition operator is

bounded on some Besov space then the compactness of the operator on larger Besov

spaces, and from any Besov space to BMOA, is equivalent to the Bloch compactness

of the operator.
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Theorem 3.7 Let 1 < r < q, 1 < p ≤ q, suppose that Cφ : Br → Br is a bounded

operator. Then the following are equivalent:

1. Cφ : B → B is a compact operator.

2. Cφ : Bp → Bq is a compact operator.

3. Cφ : D → BMOA is a compact operator.

4. Cφ : Bp → BMOA is a compact operator.

Proof. The previous proposition yields (1 ) ⇔ (2 ). Proposition 3.2 yields (3 ) ⇒
(1 ). Theorems 2.7 and 2.8 yield (2 ) ⇒ (3 ). Theorem 2.8 yields (3 ) ⇔ (4 ), if

1 < p < 2. If p > 2 then (4 ) ⇒ (3 ) is trivial, since the inclusion map, i : Bp → D, is

bounded. Moreover (2 ) ⇒ (4 ) follows as well (when p > 2) since the inclusion map,

i : Bq → BMOA, is bounded. We have shown (3 ) ⇒ (1 ) ⇔ (2 ) ⇒ (3 ) ⇔ (4 ). This

completes the proof of the theorem. 2

Arazy, Fisher, and Peetre prove the following theorem in [2, Theorem 16].

Theorem F Let µ be a positive measure on U , 0 < p < ∞. Then,

∫

U

dµ(z)

(1− |z|2)p
< ∞

if and only if there is a positive constant c such that

∫

U

|f ′(z)|pdµ(z) ≤ c||f ||B,

for all f ∈ B.

Note The proof of Theorem F can be used to show that a similar result holds for a
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collection of positive measures {µq : q ∈ U}. That is, if 0 < p < ∞, then

sup
q∈U

∫

U

dµq

(1− |z|2)p
< ∞

if and only if

sup
q∈U

∫

U

|f ′(z)|pdµq ≤ c||f ||B

for all f ∈ B.

These results, along with a non-univalent change of variables, yield the following

characterizations of bounded composition operators from the Bloch space to Bp (1 <

p < ∞), BMOA, and H2.

Proposition 3.8 Let φ be a holomorphic self-map of U .

1. Cφ : B → D is a bounded operator if and only if

∫

U

η(φ; w)

(1− |w|2)2
dA(w) =

∫

U

|φ′(z)|2
(1− |φ(z)|2)2

dA(z) < ∞ ,

where η(φ; w) denotes the number of times φ takes the value w. If w is not in

φ(U) then let η(φ; w) = 0.

2. Cφ : B → Bp (1 < p < ∞) is a bounded operator if and only if

∫

U

Np(w, φ)

(1− |w|2)p
dA(w) =

∫

U

|φ′(z)|p(1− |z|2)p−2

(1− |φ(z)|2)p
dA(z) < ∞.

3. Cφ : B → BMOA is a bounded operator if and only if

sup
q∈U

∫

U

N(w, q, φ)

(1− |w|2)2
dA(w) = sup

q∈U

∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(w) < ∞.
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4. Cφ : B → H2 is a bounded operator if and only if

∫

U

N(w, 0, φ)

(1− |w|2)2
dA(w) =

∫

U

|φ′(z)|2(1− |z|2)
(1− |φ(z)|2)2

dA(w) < ∞.

Shapiro and Taylor characterize the Hilbert-Schmidt composition operators on the

Dirichlet space in [29, Proposition 2.4]. The following proposition is proved there.

Proposition G Cφ is a Hilbert-Schmidt operator on D if and only if

∫

U

|φ′(z)|2
(1− |φ(z)|2)2

dA(z) < ∞.

In view of the two propositions above, the Hilbert-Schmidt composition operators on

the Dirichlet space are precisely those composition operators that are bounded from

the Bloch space to the Dirichlet space. The next result shows that every bounded

composition operator from B to D, and more generally from B to Bp (1 < p < ∞), is

compact.

Proposition 3.9 Let φ be a holomorphic self-map of U .

1. If 1 < p < ∞ then

∫

U

|φ′(z)|p(1− |z|2)p−2

(1− |φ(z)|2)p
dA(z) < ∞

if and only if Cφ : B → Bp is a compact operator (hence Cφ : B→ BMOA is a

compact operator as well).

2. If

lim
|q|→1

∫

U

|φ′(z)|2(1− αq(z)|2)
(1− |φ(z)|2)2

dA(z) = 0

then Cφ : B → BMOA is a compact operator.
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Proof of (1). Let (fn) be a bounded sequence in B such that fn → 0 uniformly on

compact sets, as n →∞. Then,

||Cφfn||pBp
=

∫

U

|f ′n(φ(z))|p|φ′(z)|p(1− |z|2)p−2dA(z)

=

∫

{z∈U :δ<|φ(z)|<1}
+

∫

{z∈U :|φ(z)|≤δ}
|f ′n(φ(z))|p|φ′(z)|p(1− |z|2)p−2dA(z)

= I + II (3.11)

for any 0 < δ < 1. Then

I ≤ ||fn||pB
∫

{z∈U :1−δ<|φ(z)|<1}

|φ′(z)|p(1− |z|2)p−2

(1− |φ(z)|2)p
dA(z) , (3.12)

for any δ > 0. Hence, as δ → 0 , I → 0 by the Lebesgue Dominated Convergence

Theorem ([27, Theorem 1.34, page 26]) and our hypothesis. Let ε > 0 be given.

Choose δ ∈ (0, 1) such that if h < δ then I < ε. For such an h,

II =

∫

{z∈U :|φ(z)|≤h}
|φ′(z)|p|f ′n(φ(z))|p(1− |z|2)p−2dA(z) < ε||φ||pBp

(3.13)

for n large enough, since f ′n → 0 uniformly on {z ∈ U : |φ(z)| ≤ h}. Thus (3.11)

and (3.13) imply that there exist a positive integer N such that if n ≥ N then

||Cφfn||Bp < const. ε. Thus, ||Cφfn||Bp → 0, as n →∞, and Theorem 2.11 yields that

Cφ : B → Bp is a compact operator. The converse follows from Proposition 3.8.

Proof of (2). Let (fn) be a bounded sequence in B such that fn → 0 uniformly

on compact sets as n → ∞. Let ε > 0 be given. Then by our hypothesis there is a
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δ > 0 such that if |q| > 1− δ then

∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

< ε . (3.14)

Fix q ∈ U such that |q| > 1− δ. Then

∫

U

|f ′n(φ(z))|2|φ′(z)|2(1− |αq(z)|2)dA(z)

=

∫

U

|f ′n(φ(z))|2(1− |φ(z)|2)2 |φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z)

≤ ||fn||2B
∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z) (by (3.14))

≤ const. ε . (3.15)

If |q| ≤ 1− δ then

∫

U

|f ′n(φ(z))|2|φ′(z)|2(1− |αq(z)|2)dA(z)

=

∫

U

|f ′n(φ(z))|2|φ′(z)|2 (1− |q|2)(1− |z|2)
|1− qz|2 dA(z) (by (1.1))

≤ const.

∫

U

|f ′n(φ(z))|2|φ′(z)|2(1− |z|2)dA(z)

(
1− |q|2
|1− qz|2 ≤

2

δ

)
. (3.16)

Since ∫

U

|φ′(z)|2(1− |z|2)
(1− |φ(z)|2)2

< ∞,

lim
h→0

∫

|φ(z)|>1−h

|φ′(z)|2(1− |z|2)
(1− |φ(z)|2)2

dA(z) = 0 .
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Therefore without loss of generality

∫

|φ(z)|>1−δ

|φ′(z)|2(1− |z|2)
(1− |φ(z)|2)2

< ε. (3.17)

Using (3.17) it is easy to see, similarly to the proof of part (1), that

∫

U

|f ′n(φ(z))|2|φ′(z)|2(1− |z|2)dA(z)

=

∫

|φ(z)|>1−δ

+

∫

|φ(z)|≤1−δ

|f ′n(φ(z))|2|φ′(z)|2(1− |z|2)dA(z)

< const. ε (3.18)

for n large. Then (3.15), (3.16), and (3.18) yield

sup
q∈U

∫

U

|f ′n(φ(z))|2|φ′(z)|2(1− |αq(z)|2)dA(z) < const. ε .

Therefore by (2.3), ||Cφfn||∗ < const. ε. Thus, ||Cφfn||∗ → 0 as n →∞, and Lemma

2.11 implies that Cφ : B → BMOA is a compact operator. This finishes the proof of

the proposition. 2

In view of Propositions 3.8 and 3.9 we obtain the following corollary.

Corollary 3.10 For 1 < p < ∞, every bounded composition operator from B to Bp

is compact.

Corollary 3.10 also follows from some nontrivial Banach space theory. Here is an

outline of the argument. First, Bp is isomorphic to lp, since the Lp Bergman space of

U is isomorphic to lp (see [15, Theorem 6.2, page 247]). Next B is isomorphic to l∞,

since B is isomorphic to the dual of the L1 Bergman space of U (see [10, Theorem

10 page 49]), which in turn is isomorphic to l∞. Moreover, if 1 < p < ∞ then every
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bounded linear operator T : lp → l1 is compact (see [16, Proposition 2.c.3, page 76]).

Thus, T ∗ : l∞ → lq is compact for any q ∈ (1,∞). Also a bounded operator is an

adjoint if and only if it is weak-star continuous. It is not difficult to show that if

Cφ : B → Bp is bounded, then it is weak-star continuous, and hence by the above

argument, also compact.

Next we give a characterization of compact composition operators whose range is

a subset of V MOA.

Theorem 3.11 Let φ be a holomorphic self-map of U , and X a Möbius invariant

Banach space. Then Cφ : X → V MOA is a compact operator if and only if

lim
|q|→1

sup
||f ||X<1

f∈X

∫

U

|f ′(φ(z))|2|φ′(z)|2(1− |αq(z)|2)dA(z) = 0.

Proof. First suppose that Cφ : X → V MOA is a compact operator. Then A =

cl ({f ◦ φ ∈ V MOA : ||f ||X < 1}) , the V MOA closure of the image under Cφ of the

unit ball of X, is a compact subset of V MOA. Let ε > 0 be given. Then there is a

finite subset of X, B = {f1, f2, f3, ..., fN}, such that each function in A lies at most ε

distant from B. That is, if g ∈ A then there exists j ∈ J = {1, 2, 3, ..., N} such that

||g − fj ◦ φ||∗ <
ε

4
. (3.19)

Since {fj ◦ φ : j ∈ J} ⊂ V MOA, there exists a δ > 0 such that for all j ∈ J and

|q| > 1− δ, ∫

U

|(fj ◦ φ)′(z)|2(1− |αq(z)|2)dA(z) <
ε

4
. (3.20)

By (3.19) and (3.20) we obtain that for each |q| > 1 − δ and f ∈ X such that

||f |||X < 1 there exists j ∈ J such that

∫

U

|(f ◦ φ)′(z)|2(1− |αq(z)|2)dA(z)
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≤ 2

∫

U

|(f ◦ φ− fj ◦ φ)′|2(1− |αq(z)|2)dA(z) + 2

∫

U

|(fj ◦ φ)′(z)|2(1− |αq(z)|2)dA(z)

< 2
ε

4
+ 2

ε

4
= ε.

This proves one direction.

In order to prove the converse, let (fn) be a sequence in the unit ball of X. By

Lemma 2.9 and Montel’s Theorem there exists a subsequence n1 < n2 < ... and a

function g holomorphic on U such that fnk
→ g uniformly on compact sets, as k →∞.

By our hypothesis and Fatou’s Lemma it is easy to see that Cφg ∈ V MOA. We will

show that ||Cφ(fnk
− g)||∗ → 0, as k →∞. In order to simplify the notation we will

assume, without loss of generality, that we are given a sequence (fn) in the unit ball

of X such that fn → 0 uniformly on compact sets, as n →∞. We will show that

lim
n→∞

||Cφfn||∗ = 0. (3.21)

To prove (3.21) we will use the equivalent BMOA norm as given by (1.5). Thus, our

hypothesis is equivalent to

lim
h→0

sup
θ∈[0,2π)

{f∈X:||f ||X<1}

1

h

∫

S(h,θ)

|(f ◦ φ)′(z)|2(1− |z|2)dA(z) = 0 . (3.22)

Let ε > 0 be given. By (3.22), there exists a δ > 0 such that if n ∈ N , θ ∈ [0, 2π),

and h < δ then

1

h

∫

S(h,θ)

|(fn ◦ φ)′(z)|2(1− |z|2)dA(z) < ε. (3.23)

Fix h0 < δ, θ ∈ [0, 2π), n ∈ N , and h ≥ δ. It is easy to see that there exists

{θ1, θ2, ..., θN} ⊂ [0, 2π) such that S(h, θ) is the union of the sets {S(h0, θj) : j =
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1, 2, ..., N} and K, a compact subset of U . Hence,

1

h

∫

S(h,θ)

|(fn ◦ φ)′(z)|2(1− |z|2)dA(z)

≤
N∑

j=1

1

h0

∫

S(h0,θj)

+
1

h0

∫

K

|(fn ◦ φ)′(z)|2(1− |z|2)dA(z)

= I + II. (3.24)

Since f ′n → 0 uniformly on K, as n →∞, there exists an N ∈ N such that for n ≥ N

II ≤ ε

h0

∫

K

(1− |z|2)dA(z) ≤ const. ε. (3.25)

Moreover (3.23) yields,

I ≤
N∑

j=1

ε = const. ε. (3.26)

Hence (3.23), (3.24), (3.25), and (3.26) yield (3.21). Thus Lemma 2.11 yields that

Cφ : X → V MOA is a compact operator. 2

There are symbols φ such that Cφ is compact on BMOA but not on V MOA. For

example, consider the self-map φ(z) = 1
2
exp{ z+1

z−1
}. Since ||φ||∞ < 1, Corollary 2.12

yields that Cφ is a compact operator on BMOA. Moreover since φ 6∈ B0, Cφ is not

even bounded on V MOA (Theorem C, page 22).

If φ ∈ V MOA then compactness of Cφ on BMOA implies the compactness of Cφ

on V MOA. If T is a compact operator on a Banach space X, and Y is an invariant

subspace of X such that T : Y → Y is bounded, then T : Y → Y is a compact

operator as well. Thus we obtain the following proposition.

Proposition 3.12 Let φ be a holomorphic self-map of U . Then,

1. If φ ∈ V MOA and Cφ : BMOA → BMOA is a compact operator then Cφ :
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V MOA → V MOA is a compact operator.

2. If φ ∈ B0 and Cφ : B → B is a compact operator then Cφ : B0 → B0 is a compact

operator.

Next we show that the sufficient condition of compactness of Cφ : B → BMOA in

Proposition 3.9 is also necessary for the compactness of Cφ : B → V MOA. We will

use Khintchine’s inequality for gap series (as done by Arazy, Fisher, and Peetre in [2,

Theorem 16]), and Theorem 3.11.

Theorem 3.13 Let φ be a holomorphic self-map of U . Then the following are equiva-

lent:

1. Cφ : B → V MOA is a compact operator.

2.

lim
|q|→1

∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z) = 0 .

Proof. First, suppose that (1 ) holds. Then by Theorem 3.11 and since

fθ(z) =
∞∑

n=0

(eiθz)2n ∈ B,

for all θ ∈ [0, 2π) (see [1, Lemma 2.1]),

lim
|q|→1

sup
θ∈[0,2π)

∫

U

∣∣∣∣∣
∞∑

n=0

2n(eiθw)2n−1

∣∣∣∣∣

2

N(w, q, φ)dA(w) = 0 .

Let ε > 0 be given. Then there exists a δ > 0 such that for any q ∈ U with |q| > 1− δ

and any θ ∈ [0, 2π),

Aθ
def.
=

∫

U

∣∣∣∣∣
∞∑

n=0

2n(eiθw)2n−1

∣∣∣∣∣

2

N(w, q, φ)dA(w) < ε . (3.27)
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Upon integrating (3.27) with respect to dθ
2π

and using Fubini’s Theorem, we obtain

∫ 2π

0

Aθ
dθ

2π
=

∫

U





∫ 2π

0

∣∣∣∣∣
∞∑

n=0

2neiθ(2n−1)w2n−1

∣∣∣∣∣

2
dθ

2π



N(w, q, φ)dA(w) ≤ ε . (3.28)

Khintchine’s inequality (see [36, Theorem V.8.4]) for gap series yields that for any

positive integer N

∫ 2π

0

∣∣∣∣∣
N∑

n=0

2neiθ(2n−1)w2n−1

∣∣∣∣∣

2

dθ

2π
∼

N∑
n=0

22n|w|2n+1−2. (3.29)

Therefore (3.28) and (3.29) imply that

∫ 2π

0

Aθ
dθ

2π
∼

∫

U

{ ∞∑
n=0

22n|w|2n+1−2

}
N(w, q, φ)dA(w). (3.30)

It is shown in [2, Theorem 16] that

∞∑
n=0

22n|w|2n+1 ≥ const.

(1− |w|2)2
, (3.31)

for any w ∈ U such that |w| ≥ 1
2
. Hence (3.28), (3.30), and (3.31) yield

∫

U

N(w, q, φ)

(1− |w|2)2
dA(w) ≤ const.

∫ 2π

0

Aθ
dθ

2π
< const. ε , (3.32)

for any q ∈ U with |q| > 1− δ, and any ε > 0. Thus (3.32) yields (2).

Conversely, suppose that (2) holds. Fix f in the unit ball of the Bloch space.

Then,

∫

U

|f ′(φ(z))|2|φ′(z)|2(1− |αq(z)|2)dA(z)

≤ ||f ||2B
∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z)
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≤
∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z).

The righthand side of the above inequality tends to 0, as |q| → 1, by our hypothesis.

Hence Theorem 3.11 yields that Cφ : B → V MOA is a compact operator. This

finishes the proof of the theorem. 2

Proposition 3.14 Let φ be a holomorphic self-map of U . If Cφ : BMOA → V MOA

is a compact operator then

lim
|q|→1

∫

U

|φ′(z)|2(1− |αq(z)|2)
1− |φ(z)|2 dA(z) = 0 .

Proof. By Theorem 3.11 and since fθ(z) = log 1
1−e−iθz

∈ BMOA for all θ ∈ [0, 2π),

lim
|q|→1

sup
θ∈[0,2π)

∫

U

|f ′θ(z)|2N(w, q, φ)dA(z) = 0 . (3.33)

Let ε > 0 be given. Then there exists a δ > 0 such that for any q ∈ U with |q| > 1− δ

and any θ ∈ [0, 2π),

Aθ =

∫

U

|f ′θ(z)|2N(w, q, φ)dA(z)

=

∫

U

1

|1− e−iθw|2N(w, q, φ)dA(w) < ε (3.34)

Integrating (3.34) with respect to dθ
2π

and Fubini’s Theorem yield

∫ 2π

0

Aθ
dθ

2π
=

∫

U

{∫ 2π

0

1

|1− e−iθw|2
dθ

2π

}
N(w, q, φ)dA(w) ≤ ε .
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Thus, ∫

U

N(w, q, φ)

1− |w|2 dA(w) < ε ,

for all |q| > 1− δ, and all ε > 0. Therefore

lim
|q|→1

∫

U

|φ′(z)|2(1− |αq(z)|2)
1− |φ(z)|2 dA(z) = 0 .

2

Next we show that composition operators on BMOA and V MOA, where the

symbol is a boundedly valent holomorphic function whose image lies inside a polygon

inscribed in the unit circle, are compact if and only if they are compact on the Bloch

space. We will use Propositions 3.9, 3.12, and the following theorem of Pommerenke

([24, Satz 1]).

Theorem H Let f be a holomorphic function on U such that

sup
w0

∫

|w−w0|<1

η(f, w)dA(w) < ∞ ,

where the supremum is extended over all points w0 in the complex plane. Then,

f ∈ BMOA ⇔ f ∈ B, f ∈ V MOA ⇔ f ∈ B0 .

In page 46 we defined a nontangential approach region Ωα (0 < α < 1) in U with

vertex ζ ∈ ∂U . The exact shape of the region is not relevant. The important fact

that we will use in the theorem below is that there exists 0 < r < 1 and c > 0 such

that if z ∈ Ωα and |ζ − z| < r, then

|ζ − z| ≤ c(1− |z|2). (3.35)
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Theorem 3.15 Let φ be a boundedly valent holomorphic self-map of U such that

φ(U) lies inside a polygon inscribed in the unit circle. Then the following are equiva-

lent:

1. Cφ : B → V MOA is a compact operator.

2. Cφ : B → BMOA is a compact operator.

3. Cφ : BMOA → BMOA is a compact operator.

4. Cφ : B → B is a compact operator.

5. Cφ : B0 → B0 is a compact operator.

6. Cφ : V MOA → V MOA is a compact operator.

Proof. (1)⇒(2)⇒(3) is clear.

(3)⇒(4). This is valid for all holomorphic self-maps of U (Proposition 3.2).

(4)⇒(5). Since φ is a boundedly valent holomorphic self-map of U , φ ∈ D ⊂
V MOA ⊂ B0. Thus φ ∈ B0. The compactness of Cφ now follows from part (2) of

Proposition 3.12.

(5)⇒(1). By Madigan and Matheson’s Theorem 1 (see [22]) Cφ is a compact

operator on the little Bloch space if and only if

lim
|z|→1

|φ′(z)|(1− |z|2)
1− |φ(z)|2 = 0 .

It follows that log 1
w−φ

∈ B0 for each w ∈ ∂U . By Theorem H each boundedly valent

function in B0 must belong to V MOA, hence log 1
w−φ

∈ V MOA for each w ∈ ∂U .

Thus

lim
|q|→1

∫

U

∣∣∣∣
(

log
1

w − φ(z)

)′∣∣∣∣
2

(1− |αq(z)|2)dA(z) = 0
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hence

lim
|q|→1

∫

U

|φ′(z)|2(1− |αq(z)|2)
|w − φ(z)|2 dA(z) = 0, (3.36)

for each w ∈ ∂U .

Let {wj : 1 ≤ j ≤ n} be the vertices of the inscribed polygon containing φ(U).

Break the unit disc up into a compact set K and finitely many regions

Ej = {z ∈ U : |wj − φ(z)| < r}

where r is chosen so that the regions are disjoint, and so that

|wj − φ(z)| ≤ const.(1− |φ(z)|2)

for each z ∈ Ej and each j. Then for each q ∈ U ,

∫

Ej

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z) ≤ const.

∫

Ej

|φ′(z)|2(1− |αq(z)|2)
|wj − φ(z)|2 dA(z).

Hence

∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z)

=
n∑

j=1

∫

Ej

+

∫

K

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z)

≤ const.
n∑

j=1

∫

Ej

|φ′(z)|2(1− |αq(z)|2)
|wj − φ(z)|2 dA(z)

+ const.

∫

U

|φ′(z)|2(1− |αq(z)|2)dA(z) , (3.37)

for all q ∈ U .
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Any boundedly valent holomorphic self-map of U belongs to V MOA. Hence (3.36)

and (3.37) imply that

lim
|q|→1

∫

U

|φ′(z)|2(1− |αq(z)|2)
(1− |φ(z)|2)2

dA(z) = 0. (3.38)

By (3.38) and Theorem 3.13 we obtain that Cφ : B → V MOA is a compact operator.

Proposition 3.12 yields (3 ) ⇒ (6 ). If (6 ) holds, that is Cφ : V MOA → V MOA is

a compact operator, then Cφ is weakly compact on V MOA. Hence by Theorem VI

5.5 in [9, page 189], Cφ(BMOA) ⊂ V MOA. Thus log 1
w−φ(z)

∈ V MOA (w ∈ ∂U).

Thus by the proof of (5 ) ⇒ (1 ) we obtain (6 ) ⇒ (1 ). This finishes the proof of the

theorem. 2

Definition 3.16 A region G ⊂ U is said to have a nontangential cusp at ζ ∈ ∂U if

lim
z→1
z∈G

|Imz|
|1− z| = 0 .

Note Theorem 3.5, Theorem 3.15 and Madigan and Matheson’s Theorem 5 (see [22,

page 2685]) yield that if φ is a univalent self-map of U such that φ(U) has finitely

many points of contact with ∂U and such that at each of these points φ(U) has a

nontangential cusp, then Cφ is a compact operator on Bp (p > 2), on BMOA, and

on V MOA.
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Final remarks and questions

Madigan and Matheson showed that if Cφ : B0 → B0 is weakly compact then it is

compact. Is a similar statement valid for Cφ : V MOA → V MOA? That is, does

Cφ(BMOA) ⊂ V MOA imply that Cφ is a compact operator on V MOA?

In Theorem 3.15 we showed that for certain boundedly valent holomorphic self-

maps of U , compactness of Cφ on BMOA is equivalent to the compactness of Cφ on

B. Is this true for all boundedly valent symbols?

In Theorem 3.15 we used that φ is boundedly valent to be able to conclude that

if log 1
w−φ(z)

∈ B0 then log 1
w−φ(z)

∈ V MOA (w ∈ ∂U). We should mention here that

Stroethoff, using an area version of the BMOA counting functions, characterizes

exactly when a function φ ∈ B0 belongs to V MOA. He showed in [33, page 78] that

a function φ ∈ B0 belongs to V MOA if and only if for every δ > 0

lim
|p|→1

sup
w

|φ(p)−w|≥δ

∫ 1

0

tη(φ ◦ αp − w, t)dt = 0.

In Theorem 3.13 we showed that the compactness of Cφ : B → V MOA is de-

termined by the “behavior” of {Cφ

∑ (
eiθφ(z))2n)

: θ ∈ [0, 2π)}. Does a similar

statement hold for compact operators Cφ : BMOA → V MOA? That is, is it true

64
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that Cφ : BMOA → V MOA is a compact operator if and only if

lim
|q|→1

sup
θ∈[0,2π)

∫

U

∣∣∣∣
(

log
1

1− eiθφ(z)

)′
(z)

∣∣∣∣
2

(1− |αq(z)|2)dA(z) = 0 ?
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